82 research outputs found

    Altered Excitability and Local Connectivity of mPFC-PAG Neurons in a Mouse Model of Neuropathic Pain

    Get PDF
    The medial prefrontal cortex (mPFC) plays a major role in both sensory and affective aspects of pain. There is extensive evidence that chronic pain produces functional changes within the mPFC. However, our understanding of local circuit changes to defined subpopulations of mPFC neurons in chronic pain models remains unclear. A major subpopulation of mPFC neurons project to the periaqueductal gray (PAG), which is a key midbrain structure involved in endogenous pain suppression and facilitation. Here, we used laser scanning photostimulation of caged glutamate to map cortical circuits of retrogradely labeled cortico-PAG (CP) neurons in layer 5 (L5) of mPFC in brain slices prepared from male mice having undergone chronic constriction injury (CCI) of the sciatic nerve. Whole-cell recordings revealed a significant reduction in excitability for L5 CP neurons contralateral to CCI in the prelimbic (PL), but not infralimbic (IL), region of mPFC. Circuit mapping showed that excitatory inputs to L5 CP neurons in both PL and IL arose primarily from layer 2/3 (L2/3) and were significantly reduced in CCI mice. Glutamate stimulation of L2/3 and L5 elicited inhibitory inputs to CP neurons in both PL and IL, but only L2/3 input was significantly reduced in CP neurons of CCI mice. We also observed significant reduction in excitability and L2/3 inhibitory input to CP neurons ipsilateral to CCI. These results demonstrating region and laminar specific changes to mPFC-PAG neurons suggest that a unilateral CCI bilaterally alters cortical circuits upstream of the endogenous analgesic network, which may contribute to persistence of chronic pain

    Peripheral nerve injury reduces the excitation-inhibition balance of basolateral amygdala inputs to prelimbic pyramidal neurons projecting to the periaqueductal gray

    Get PDF
    Cellular and synaptic mechanisms underlying how chronic pain induces maladaptive alterations to local circuits in the medial prefrontal cortex (mPFC), while emerging, remain unresolved. Consistent evidence shows that chronic pain attenuates activity in the prelimbic (PL) cortex, a mPFC subregion. This reduced activity is thought to be driven by increased inhibitory tone within PL circuits. Enhanced input from the basolateral amygdala (BLA) to inhibitory neurons in PL cortex is one well-received mechanism for this circuit change. In mice, we used retrograde labeling, brain slice recordings, and optogenetics to selectively stimulate and record ascending BLA inputs onto PL neurons that send projections to the periaqueductal gray (PAG), which is a midbrain structure that plays a significant role in endogenous analgesia. Activating BLA projections evoked both excitatory and inhibitory currents in cortico-PAG (CP) neurons, as we have shown previously. We measured changes to the ratio of BLA-evoked excitatory to inhibitory currents in the spared nerve injury (SNI) model of neuropathic pain. Our analysis reveals a reduced excitation-inhibition (E/I) ratio of BLA inputs to PL-CP neurons 7 days after SNI. The E/I ratio of BLA inputs to CP neurons in neighboring infralimbic (IL) cortex was unchanged in SNI animals. Collectively, this study reveals that the overall E/I balance of BLA inputs to PL neurons projecting to the PAG is reduced in a robust neuropathic pain model. Overall, our findings provide new mechanistic insight into how nerve injury produces dysfunction in PL circuits connected to structures involved in pain modulation

    Synthesis, thermal and antitumour studies of Th(IV) complexes with furan-2-carboxaldehyde4-phenyl-3-thiosemicarbazone

    Get PDF
    Thorium(IV) complexes with the Schiff base furan-2-carboxaldehyde4-phenyl-3-thiosemicarbazone (L) were synthesised and characterized. The composition and structure of the metal complexes were proposed based on elemental analysis, molar conductivity measurements, FTIR and 1H-NMR spectroscopy. The Schiff base behaves as a neutral bidentate ligand coordinating through the azomethine N and the thioketo S atoms. From various studies, complexes were ascertained the general formula [ThL2X4] and [ThL2Y2], where X represents NO3–, NCS–, CH3COO–, CH3CHOHCOO–, ClO4– and Y SO42–and C2O42–. The thermal behaviour of the nitrato and oxalato complexes was studied and kinetic and thermodynamic parameters were calculated using the Coats-Redfern Equation. The ligand and a representative complex [ThL2(NO3)4] were screened in vitro for their antitumour activity against the human cervical cancer cell line (HeLa)

    Nicotine-induced survival signaling in lung cancer cells is dependent on their p53 status while its down-regulation by curcumin is independent

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Lung cancer is the most lethal cancer and almost 90% of lung cancer is due to cigarette smoking. Even though nicotine, one of the major ingredients of cigarette smoke and the causative agent for addiction, is not a carcinogen by itself, several investigators have shown that nicotine can induce cell proliferation and angiogenesis. We observed that the proliferative index of nicotine is different in the lung cancer cell lines H1299 (p53-/-) and A549 (p53+/+) which indicates that the mode of up-regulation of survival signals by nicotine might be different in cells with and without p53.</p> <p>Results</p> <p>While low concentrations of nicotine induced activation of NF-κB, Akt, Bcl2, MAPKs, AP1 and IAPs in H1299, it failed to induce NF-κB in A549, and compared to H1299, almost 100 times higher concentration of nicotine was required to induce all other survival signals in A549. Transfection of WT-p53 and DN-p53 in H1299 and A549 respectively, reversed the mode of activation of survival signals. Curcumin down-regulated all the survival signals induced by nicotine in both the cells, irrespective of their p53 status. The hypothesis was confirmed when lower concentrations of nicotine induced NF-κB in two more lung cancer cells, Hop-92 and NCI-H522 with mutant p53 status. Silencing of p53 in A549 using siRNA made the cells susceptible to nicotine-induced NF-κB nuclear translocation as in A549 DN-p53 cells.</p> <p>Conclusions</p> <p>The present study reveals a detrimental role of nicotine especially in lung cancer patients with impaired p53 status and identifies curcumin as a potential chemopreventive.</p

    Risk assessment for hospital admission in patients with COPD; a multi-centre UK prospective observational study.

    Get PDF
    In chronic obstructive pulmonary disease (COPD), acute exacerbation of COPD requiring hospital admission is associated with mortality and healthcare costs. The ERICA study assessed multiple clinical measures in people with COPD, including the short physical performance battery (SPPB), a simple test of physical function with 3 components (gait speed, balance and sit-to-stand). We tested the hypothesis that SPPB score would relate to risk of hospital admissions and length of hospital stay. Data were analysed from 714 of the total 729 participants (434 men and 280 women) with COPD. Data from this prospective observational longitudinal study were obtained from 4 secondary and 1 tertiary centres from England, Scotland, and Wales. The main outcome measures were to estimate the risk of hospitalisation with acute exacerbation of COPD (AECOPD and length of hospital stay derived from hospital episode statistics (HES). In total, 291 of 714 individuals experienced 762 hospitalised AECOPD during five-year follow up. Poorer performance of SPPB was associated with both higher rate (IRR 1.08 per 1 point decrease, 95% CI 1.01 to 1.14) and increased length of stay (IRR 1.18 per 1 point decrease, 95% CI 1.10 to 1.27) for hospitalised AECOPD. For the individual sit-to-stand component of the SPPB, the association was even stronger (IRR 1.14, 95% CI 1.02 to 1.26 for rate and IRR 1.32, 95% CI 1.16 to 1.49 for length of stay for hospitalised AECOPD). The SPPB, and in particular the sit-to-stand component can both evaluate the risk of H-AECOPD and length of hospital stay in COPD. The SPPB can aid in clinical decision making and when prioritising healthcare resources

    Surrogate Markers of Cardiovascular Risk and Chronic Obstructive Pulmonary Disease: A Large Case-Controlled Study.

    Get PDF
    Cardiovascular disease is a common comorbidity and cause of mortality in chronic obstructive pulmonary disease. A better understanding of mechanisms of cardiovascular risk in chronic obstructive pulmonary disease patients is needed to improve clinical outcomes. We hypothesized that such patients have increased arterial stiffness, wave reflections, and subclinical atherosclerosis compared with controls and that these findings would be independent of smoking status and other confounding factors. A total of 458 patients with a diagnosis of chronic obstructive pulmonary disease and 1657 controls (43% were current or ex-smokers) with no airflow limitation were matched for age, sex, and body mass index. All individuals underwent assessments of carotid-femoral (aortic) pulse wave velocity, augmentation index, and carotid intima-media thickness. The mean age of the cohort was 67±8 years and 58% were men. Patients with chronic obstructive pulmonary disease had increased aortic pulse wave velocity (9.95±2.54 versus 9.27±2.41 m/s; P<0.001), augmentation index (28±10% versus 25±10%; P<0.001), and carotid intima-media thickness (0.83±0.19 versus 0.74±0.14 mm; P<0.001) compared with controls. Chronic obstructive pulmonary disease was associated with increased levels of each vascular biomarker independently of physiological confounders, smoking, and other cardiovascular risk factors. In this large case-controlled study, chronic obstructive pulmonary disease was associated with increased arterial stiffness, wave reflections, and subclinical atherosclerosis, independently of traditional cardiovascular risk factors. These findings suggest that the cardiovascular burden observed in this condition may be mediated through these mechanisms and supports the concept that chronic obstructive pulmonary disease is an independent risk factor for cardiovascular disease

    Vascular inflammation and aortic stiffness: potential mechanisms of increased vascular risk in chronic obstructive pulmonary disease

    Get PDF
    Abstract Background Chronic obstructive pulmonary disease (COPD) is a complex inflammatory condition in which an important extra-pulmonary manifestation is cardiovascular disease. We hypothesized that COPD patients would have increased aortic inflammation and stiffness, as candidate mechanisms mediating increased cardiovascular risk, compared to two negative control groups: healthy never-smokers and smokers without COPD. We also studied patients with COPD due to alpha− 1 antitrypsin deficiency (α1ATD) as a comparator lung disease group. Methods Participants underwent 18F-Fluorodeoxyglucose (FDG) positron emission tomography imaging to quantify aortic inflammation as the tissue-to-blood-ratio (TBR) of FDG uptake. Aortic stiffness was measured by carotid-femoral aortic pulse wave velocity (aPWV). Results Eighty-five usual COPD (COPD due to smoking), 12 α1ATD-COPD patients and 12 each smokers and never-smokers were studied. There was no difference in pack years smoked between COPD patients and smokers (45 ± 25 vs 37 ± 19, p = 0.36), but α1ATD patients smoked significantly less (19 ± 11, p < 0.001 for both). By design, spirometry measures were lower in COPD and α1ATD-COPD patients compared to smokers and never-smokers. Aortic inflammation and stiffness were increased in COPD (TBR: 1.90 ± 0.38, aPWV: 9.9 ± 2.6 m/s) and α1ATD patients (TBR: 1.94 ± 0.43, aPWV: 9.5 ± 1.8 m/s) compared with smokers (TBR: 1.74 ± 0.30, aPWV: 7.8 ± 1.8 m/s, p < 0.05 all) and never-smokers (TBR: 1.71 ± 0.34, aPWV: 7.9 ± 1.7 m/s, p ≤ 0.05 all). Conclusions In this cross-sectional prospective study, novel findings were that both usual COPD and α1ATD-COPD patients have increased aortic inflammation and stiffness compared to smoking and never-smoking controls, regardless of smoking history. These findings suggest that the presence of COPD lung disease per se may be associated with adverse aortic wall changes, and aortic inflammation and stiffening are potential mechanisms mediating increased vascular risk observed in COPD patients

    Calcium/Calmodulin Dependent Protein Kinase II Bound to NMDA Receptor 2B Subunit Exhibits Increased ATP Affinity and Attenuated Dephosphorylation

    Get PDF
    Calcium/calmodulin dependent protein kinase II (CaMKII) is implicated to play a key role in learning and memory. NR2B subunit of N-methyl-D-aspartate receptor (NMDAR) is a high affinity binding partner of CaMKII at the postsynaptic membrane. NR2B binds to the T-site of CaMKII and modulates its catalysis. By direct measurement using isothermal titration calorimetry (ITC), we show that NR2B binding causes about 11 fold increase in the affinity of CaMKII for ATPγS, an analogue of ATP. ITC data is also consistent with an ordered binding mechanism for CaMKII with ATP binding the catalytic site first followed by peptide substrate. We also show that dephosphorylation of phospho-Thr286-α-CaMKII is attenuated when NR2B is bound to CaMKII. This favors the persistence of Thr286 autophosphorylated state of CaMKII in a CaMKII/phosphatase conjugate system in vitro. Overall our data indicate that the NR2B- bound state of CaMKII attains unique biochemical properties which could help in the efficient functioning of the proposed molecular switch supporting synaptic memory

    The p38 mitogen activated protein kinase inhibitor losmapimod in chronic obstructive pulmonary disease patients with systemic inflammation, stratified by fibrinogen: A randomised double-blind placebo-controlled trial.

    Get PDF
    BACKGROUND: Cardiovascular disease is a major cause of morbidity and mortality in COPD patients. Systemic inflammation associated with COPD, is often hypothesised as a causal factor. p38 mitogen-activated protein kinases play a key role in the inflammatory pathogenesis of COPD and atherosclerosis. OBJECTIVES: This study sought to evaluate the effects of losmapimod, a p38 mitogen-activated protein kinase (MAPK) inhibitor, on vascular inflammation and endothelial function in chronic obstructive pulmonary disease (COPD) patients with systemic inflammation (defined by plasma fibrinogen >2·8g/l). METHODS: This was a randomised, double-blind, placebo-controlled, Phase II trial that recruited COPD patients with plasma fibrinogen >2.8g/l. Participants were randomly assigned by an online program to losmapimod 7·5mg or placebo tablets twice daily for 16 weeks. Pre- and post-dose 18F-Fluorodeoxyglucose positron emission tomography co-registered with computed tomography (FDG PET/CT) imaging of the aorta and carotid arteries was performed to quantify arterial inflammation, defined by the tissue-to-blood ratio (TBR) from scan images. Endothelial function was assessed by brachial artery flow-mediated dilatation (FMD). RESULTS: We screened 160 patients, of whom, 36 and 37 were randomised to losmapimod or placebo. The treatment effect of losmapimod compared to placebo was not significant, at -0·05 for TBR (95% CI: -0·17, 0·07), p = 0·42, and +0·40% for FMD (95% CI: -1·66, 2·47), p = 0·70. The frequency of adverse events reported was similar in both treatment groups. CONCLUSIONS: In this plasma fibrinogen-enriched study, losmapimod had no effect on arterial inflammation and endothelial function at 16 weeks of treatment, although it was well tolerated with no significant safety concerns. These findings do not support the concept that losmapimod is an effective treatment for the adverse cardiovascular manifestations of COPD

    Cardiovascular risk prediction using physical performance measures in COPD: results from a multicentre observational study

    Get PDF
    Funder: National Institute for Health Research; FundRef: http://dx.doi.org/10.13039/501100000272Funder: Health Data Research UKFunder: NIHR Cambridge Comprehensive Biomedical Research CentreFunder: NIHR Nottingham BRC respiratory themeObjectives: Although cardiovascular disease (CVD) is a common comorbidity associated with chronic obstructive pulmonary disease (COPD), it is unknown how to improve prediction of cardiovascular (CV) risk in individuals with COPD. Traditional CV risk scores have been tested in different populations but not uniquely in COPD. The potential of alternative markers to improve CV risk prediction in individuals with COPD is unknown. We aimed to determine the predictive value of conventional CVD risk factors in COPD and to determine if additional markers improve prediction beyond conventional factors. Design: Data from the Evaluation of the Role of Inflammation in Chronic Airways disease cohort, which enrolled 729 individuals with Global Initiative for Chronic Obstructive Lung Disease (GOLD) stage II–IV COPD were used. Linked hospital episode statistics and survival data were prospectively collected for a median 4.6 years of follow-up. Setting: Five UK centres interested in COPD. Participants: Population-based sample including 714 individuals with spirometry-defined COPD, smoked at least 10 pack years and who were clinically stable for >4 weeks. Interventions: Baseline measurements included aortic pulse wave velocity (aPWV), carotid intima–media thickness (CIMT), C reactive protein (CRP), fibrinogen, spirometry and Body mass index, airflow Obstruction, Dyspnoea and Exercise capacity (BODE) Index, 6 min walk test (6MWT) and 4 m gait speed (4MGS) test. Primary and secondary outcome measures: New occurrence (first event) of fatal or non-fatal hospitalised CVD, and all-cause and cause-specific mortality. Results: Out of 714 participants, 192 (27%) had CV hospitalisation and 6 died due to CVD. The overall CV risk model C-statistic was 0.689 (95% CI 0.688 to 0.691). aPWV and CIMT neither had an association with study outcome nor improved model prediction. CRP, fibrinogen, GOLD stage, BODE Index, 4MGS and 6MWT were associated with the outcome, independently of conventional risk factors (p<0.05 for all). However, only 6MWT improved model discrimination (C=0.727, 95% CI 0.726 to 0.728). Conclusion: Poor physical performance defined by the 6MWT improves prediction of CV hospitalisation in individuals with COPD. Trial registration number: ID 11101
    corecore